A NEW AMINOGLYCOSIDE ANTIBIOTIC G-367 S₁, 2'-*N*-FORMYLSISOMICIN FERMENTATION, ISOLATION AND CHARACTERIZATION

Shuzo Satoi, Masashi Awata, Naoki Muto, Mitsuo Hayashi, Hitoshi Sagai and Masaru Otani

> Research Laboratories, Toyo Jozo Co., Ltd. Ohito, Shizuoka, 410-23, Japan

(Received for publication October 7, 1982)

A new aminoglycoside antibiotic, G-367 S_1 (2'-*N*-formylsisomicin, $C_{20}H_{37}N_5O_8$) produced by a rare actinomycetes, *Dactylosporangium thailandense* G-367 (FERM-P 4840) has been isolated by column chromatography on a cation-exchange resin. G-367 S_1 is active against Gram-positive and Gram-negative bacteria.

In the course of our screening program for new antibiotics, actinomycete strain G-367, identified as

Dactylosporangium thailandense, was found to produce an antimicrobial agent. The organism was isolated from a soil sample collected at Fuji City, Shizuoka Prefecture, Japan. A new watersoluble basic antibiotic named G-367 S_1 was purified from the broth filtrate by a cation-exchange resin process and column chromatography. In this paper, the fermentation, isolation and characterization of G-367 S_1 is reported.

Structures of G-367 S1 and sisomicin.

Fermentation

Dactylosporangium thailandense G-367 was cultured in an Erlenmeyer flask which contained 100 ml of a medium composed of 1 % dextrin, 1 % glucose, 0.5 % NZ-Amine type A, 0.5 % yeast extract and 0.1 % CaCO₃ (pH was adjusted to 7.0 before sterilization) on a rotary shaker at 30°C for 120 hours.

One thousand ml of the culture broth was inoculated into 20 liters of the above-mentioned medium in a 30-liter fermentor. The fermentation was conducted at 30°C under aeration of 20 liters/minute and agitation of 300 rpm.

Ten liters of the culture broth was inoculated into 200 liters of a medium composed of 5% dextrin, 0.5% glucose, 3% soybean meal, 0.7% CaCO₃ and 1.3 ppm CoCl₃ (pH was adjusted to 7.0 before sterilization) in a 250-liter fermentor. The fermentation was conducted at 30°C under aeration of 100 liters/minute and agitation of 250 rpm. The potency of the cultured broth was estimated by a disc plate method against *Bacillus subtilis* PCI 219. After 120 hours incubation, a maximum concentration (30 μ g/ml as G-367 S₁) was obtained.

Isolation

The 120 hours cultured broth (200 liters) containing the G-367 S_1 was adjusted to pH 2.0. After 30 minutes, the broth was adjusted to pH 7.0 and filtered. G-367 S_1 in the filtrate was absorbed on a column of Amberlite IRC-50 (NH₄⁺) resin (10 liters). The column was washed with water (20 liters)

and the antibiotic was eluted with $2 \le NH_4OH$ (20 liters). Active fractions were combined and concentrated to 100 ml *in vacuo*. The aqueous solution was adjusted to pH 7.0 and charged on a column of CM-Sephadex C-25 (NH₄⁺) (4×30 cm). After washing with distilled water, the column was eluted with aqueous ammonia with a concentration gradient from water (2.5 liters) to 0.35 M (2.5 liters). The eluate was collected in 20 ml fractions and each fraction was monitored by disc plate assay. Fractions containing G-367 S₁ (fractions Nos. 175~185) were concentrated and lyophilized to give a colorless solid (750 mg) of pure G-367 S₁.

Physico-chemical Properties

G-367 S_1 is a water-soluble, basic, white powder. It is stable at pH 2.0, 7.0 and 9.0 at 60°C for 30 minutes. G-367 S_1 gives positive reactions to ninhydrin and KMnO₄ tests. The physico-chemical properties of G-367 S_1 are listed in Tables 1 and 2. G-367 S_1 was clearly differentiated from known aminoglycoside antibiotics by these properties.

Table 1. Physico-chemical properties of G-367 S₁.

Nature	lature Basic, white powder		powder	Antibiotics	А	В
Matule Mp $[\alpha]_{D}^{24}$ UV $\lambda_{max}^{H_2O}$ (nm Elementary a CI-MS (<i>i</i> -C ₄ H IR ν_{max}^{KBr} (cm ⁻¹)) nalysis (%) C H N H ₁₀) m/z ¹)	$\begin{array}{c} \text{Jasic, white} \\ 130 \sim 133^{\circ}\text{C} \\ +188.9^{\circ}\text{C} (a \\ \text{End absorpti} \\ \hline C_{20} \\ \text{Found} \\ 50.14 \\ 7.60 \\ 14.42 \\ 476 \\ 3350, 2920, 1 \\ 1380, 1140, 1 \\ 1000 \\ 1400$	2 1.0, H₂O) ion H₃7N₅O₃ Calcd. 50.51 7.84 14.73 (MH ⁺) 660, 1390, 100, 1050,	G-367 S ₁ Sisomicin Verdamicin C_{1a} Gentamicin C_2 Gentamicin C_1 Solvent system, A: B: Silica gel TLC: TL	$\begin{array}{c} & \\ & 0.36 \\ & 0.44 \\ & 0.53 \\ & 0.36 \\ & 0.48 \\ & 0.54 \end{array}$ $\begin{array}{c} CHCl_{8} - MeOH \\ (1:1:1, lower 1 \\ CHCl_{8} - MeOH \\ (1:2:1). \\ C \text{ plastic sheets} \end{array}$	0.56 0.50 0.59 0.42 0.52 0.57 (- 28% NH ₄ OH layer). (- 14% NH ₄ OH silica gel 60 F ₂₅₄

The protonated molecular ion at m/z 476 of the chemical ionization mass spectrum using *iso*butane as the reagent gas and the elemental analysis for G-367 S₁ agreed with the molecular formula of $C_{20}H_{87}N_8O_8$. The IR and ¹H NMR spectra of G-367 S₁ are shown in Figs. 1 and 2, respectively. The ¹H NMR spectrum (100 MHz, D₂O) of G-367 S₁ revealed the presence of one *N*-formyl proton¹) (8.08

ppm, 1H, s) and two methyl groups assigned to N-CH₃ (2.53 ppm, 3H, s) and C-CH₃ (1.22 ppm, 3H, s). The ¹⁸C NMR carbon chemical shifts of G-367 S₁ are shown in Table 3 together with those of sisomicin²⁾, and these data are very similar. The structural distinction between G-367 S₁ and sisomicin^{3,4)} was the lack of an *N*-formyl group in sisomicin.

Therefore, these data indicated that G-367 S_1 is 2'-*N*-formylsisomicin.

Fig. 1. IR spectrum of G-367 S₁ in KBr disc.

Table 2. Rf values of aminoglycoside antibiotics.

Table 3. 13 C NMR chemical shifts of G-367 S₁ and sisomicin.

Center	Chemical shifts δ (ppm)*		C 1	Chemical shifts δ (ppm)*	
Carbon	G-367 S ₁	Sisomicin	Carbon	G-367 S ₁	Sisomicin
1	51.7	51.8	5'	150.8	150.4
2	36.3	36.4	6'	43.3	43.5
3	50.2	50.4	1‴	101.4	101.5
4	85.3	85.3	2''	70.1	70.0
5	75.3	75.4	3''	64.2	64.3
6	87.8	87.8	4''	73.2	73.0
1'	98.1	100.6	5''	68.6	68.5
2'	45.5	47.6	3''-CH ₃	37.8	37.9
3'	23.4	25.6	4"-CH ₃	22.6	22.9
4'	96.2	96.5	N-CHO	164.7	

* Measured in D₂O (pD 11), dioxane (67.4 ppm) as an internal standard.

Biological Properties

The antimicrobial activity of G-367 S_1 was determined in a nutrient agar. It has an activity against many of the microorganisms shown in Table 4.

Acknowledgements

The authors wish to thank to Dr. S. MITSUHASHI for providing the bacterial strains for MIC determination.

Standar	G-367 S ₁ (µg/ml)	Sisomicin (µg/ml)		
Escherichia coli	MLI629	APH(3')	3.1	0.8
Pseudomonas aeruginosa	GN4496		12.5	0.8
	GN237		>100	12.5
	GN4490		12.5	0.8
	GN4492		>100	100
Alkaligenes	GN573	+APH(6)	>100	50
Escherichia coli	ML4849	+AAD(2'')	>100	6.3
	GN3684	APH(3'')	3.1	0.4
	GN3644		3.1	0.8
Staphylococcus aureus	MS11446	APH(2")+AAC(3)	3.1	≤ 0.2
	ML4844	APH(2'')	3.1	≤ 0.2
Pseudomonas aeruginosa	GN1567	AAC(6')-I	25	1.6
	GN4925	AAC(6')-III	>100	50
	GN315	AAC(6')-IV	>100	12.5
	GN362		>100	12.5
	GN208		>100	100
	GN3052		>100	>100
Proteus inconstans	GN1554	AAC(2')	6.3	12.5
	GN626		100	100
Proteus sp.	GN7777		50	50
Escherichia coli	ML4846	AAC(3)-I	3.1	25
Pseudomonas aeruginosa	ML4847	AAC(3)-III	>100	>100
	GN3054	AAC(3)	100	100
	GN3055		>100	>100
	GN4471		100	100
	GN4495		25	50
	GN4470		50	100
	GN4493		25	25
	GN4489		50	50
	GN7884		>100	100
	GN4487		50	100
Enterobacter cloacae	GN8282		1.6	0.4
Escherichia coli	GN3451	AAD(3'')	6.3	0.8
	GN4861		3.1	0.8
	GN4469		6.3	1.6
Staphylococcus aureus	MS27	AAD(6)	6.3	0.4
Klebsiella pneumoniae	GM3057	AAD(2'')	>100	50
	GN3058		>100	50
Serratia marcescens	GN7979		>100	25
Klebsiella pneumoniae	GN3057		>100	12.5
Serratia marcescens	GN6944		>100	25
Staphylococcus epidermidis	ML4843	AAD(4')	1.6	≤ 0.2
Staphylococcus aureus	ML4845		0.8	≤ 0.2

Table 4. Antibacterial activity of G-367 S_1 and sisomicin.

References

- NAGABHUSHAN, T. L.; W. N. TURNER, P. J. L. DANIELS & J. B. MORTON: The gentamicin antibiotics. 7. Structures of gentamicin antibiotics A₁, A₃ and A₄. J. Org. Chem. 40: 2830~2834, 1975
- MORTON, J. B.; R. C. LONG, P. J. L. DANIELS, R. W. TKACH & J. H. GOLDSTEIN: A carbon-13 magnetic resonance study of aminoglycoside pseudotrisaccharides. The gentamicin antibiotics. J. Am. Chem. Soc. 95: 7464 ~ 7469, 1973
- 3) WEINSTEIN, M. J.; J. A. MARQUEZ, R. T. TESTA, G. H. WAGMAN, E. M. ODEN & J. A. WAITZ: Antibiotic 6640, a new *Micromonospora*-produced aminoglycoside antibiotic. J. Antibiotics 23: 551~554, 1970
- 4) LEE, B. K.; R. G. CONDON, G. H. WAGMAN & M. J. WEINSTEIN: *Micromonospora*-produced sisomicin components. J. Antibiotics 29: 678 ~ 684, 1976